Titre : |
Multimodal perception and secure state estimation for robotic mobility platforms |
Type de document : |
texte imprimé |
Auteurs : |
Xinghua Liu, Auteur ; Rui Jiang, Auteur ; Badong Chen, Auteur ; Shuzhi Sam Ge, Auteur |
Importance : |
1 vol. (XVI-208 p.) |
Présentation : |
ill. en noir et en coul. |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-1-119-87601-4 |
Langues : |
Anglais (eng) |
Index. décimale : |
005.7 |
Résumé : |
"This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. In particular, the book discusses the two essential topics in autonomous systems: 1. secure state estimation that focuses on system robustness under cyber-attacks, and 2. multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors. Finally, the authors introduce a geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, where real-time road-constrained and heading-assisted pose estimation is achieved. The proposed geometric pose estimation has been validated using public and self-collected data and can be further extended to other kinds of sensor configurations with state and measurement constraints |
Permalink : |
./index.php?lvl=notice_display&id=21544 |
Multimodal perception and secure state estimation for robotic mobility platforms [texte imprimé] / Xinghua Liu, Auteur ; Rui Jiang, Auteur ; Badong Chen, Auteur ; Shuzhi Sam Ge, Auteur . - [s.d.] . - 1 vol. (XVI-208 p.) : ill. en noir et en coul. ; 24 cm. ISBN : 978-1-119-87601-4 Langues : Anglais ( eng)
Index. décimale : |
005.7 |
Résumé : |
"This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. In particular, the book discusses the two essential topics in autonomous systems: 1. secure state estimation that focuses on system robustness under cyber-attacks, and 2. multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors. Finally, the authors introduce a geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, where real-time road-constrained and heading-assisted pose estimation is achieved. The proposed geometric pose estimation has been validated using public and self-collected data and can be further extended to other kinds of sensor configurations with state and measurement constraints |
Permalink : |
./index.php?lvl=notice_display&id=21544 |
|  |