Titre : |
Statistics for data scientists : an introduction to probability, statistics, and data analysis |
Type de document : |
texte imprimé |
Auteurs : |
Maurits Kaptein (19..-..), Auteur ; Edwin Van den Heuvel (19..-..), Auteur |
Editeur : |
Cham : Springer |
Collection : |
Undergraduate topics in computer science, ISSN 2197-1781 |
Importance : |
1 vol. (xxiv-321 p.) |
Présentation : |
ill. en coul, couv. ill. en coul |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-3-030-10530-3 |
Langues : |
Anglais (eng) |
Mots-clés : |
Statistical methods
Data analysis
Inferential statistics
Exploratory data analysis
Regression analysis
Machine learning
Statistical modeling
Probability theory
Hypothesis testing
Statistical computing
Data visualization
Predictive analytics
Statistical learning
R programming
Python for statistics |
Index. décimale : |
519.2 Probabilités et statistiques mathématiques |
Résumé : |
This provides an undergraduate introduction to analysing data for science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis - supported by numerous real data examples and reusable [R] code - with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern mehtods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for date science |
|  |